

Levelling Up Grades Through Skills

# **Pure Chemistry**

# Physical Geography | Section II

<u>Chapter 2.1:</u> Kinetic Particle Theory

For more learning resources, do visit

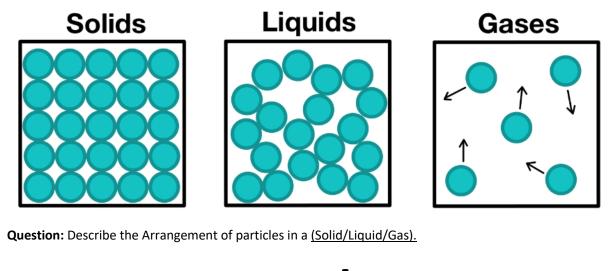


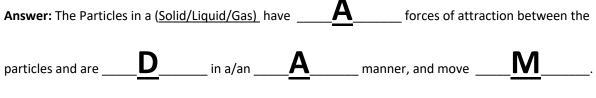
t.me/levupeducation

© LevUp Education

# Learning Outcomes

| 2.1 Kinetic particle theory                                                                                                                         | Have<br>not<br>Revised<br>yet | Revised<br>but need<br>help | Revised and<br>understood | Revised<br>and able<br>to do<br>questions |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------|---------------------------|-------------------------------------------|
| (a) describe the particles in solid, liquid, and gaseous states of matter using the kinetic particle theory                                         |                               |                             |                           |                                           |
| (b)Explain the interconversion between different<br>states of matter using the kinetic particle theory and<br>the energy changes involved           |                               |                             |                           |                                           |
| (c) describe and explain evidence for the movement of particles in liquids and gases                                                                |                               |                             |                           |                                           |
| (d) explain everyday effects of diffusion in terms of particles, e.g. the spread of perfumes and cooking aromas, tea, and coffee grains in water    |                               |                             |                           |                                           |
| (e) state qualitatively the effect of molecular mass on<br>the rate of diffusion and explain the dependence of<br>rate of diffusion on temperature. |                               |                             |                           |                                           |


## (a) Kinetic Particle Theory


Definition:

The Kinetic Particle Theory states that all matter is made up of tiny particles that are in constant random motion

There are 3 different states of matter: Solid, Liquid and Gas. To describe the 3 states of matter using Kinetic Particle Theory, we shall use the **ADAM** framework.

|                               | <u>Keywords</u>                                        |
|-------------------------------|--------------------------------------------------------|
| Attraction between            | Solids: Strong forces of attraction                    |
| particles                     | Liquids: <u>Moderately strong</u> forces of attraction |
|                               | Gas: Weak forces of attraction                         |
| <b>D</b> istance between      | Solids: <u>Closely packed</u>                          |
| particles                     | Liquids: Moderately closely packed                     |
|                               | Gas: <u>Far Apart</u>                                  |
| <b>A</b> rrangement of        | Solids: Arranged in <u>orderly</u> manner              |
| particles                     | Liquids: Arranged in <u>disorderly</u> manner          |
|                               | Gases: Arranged in <u>disorderly</u> manner            |
| <b>M</b> ovement of Particles | Solids: move by <u>Vibrating in fixed positions</u>    |
|                               | Liquids: move by <u>Sliding over one another</u>       |
|                               | <u>throughout the liquid</u>                           |
|                               | Gas: Move randomly at high speeds                      |



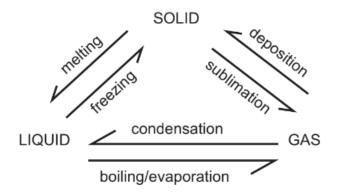


#### Properties of Solids Liquids and Gases

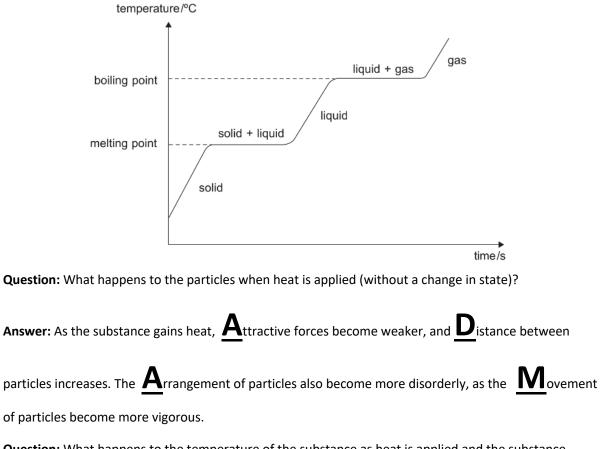
#### Solids and Liquids are incompressible, but Gases are compressible

Solids and liquids have a fixed volume and are incompressible because there is very little space between the particles, hence the volume occupied by the particles cannot be reduced further. (*i.e. the particles cannot be squeezed closer together because they are already so closely packed*)

Meanwhile, since gas particles are so far apart, the particles can be brought closer together to reduce the volume occupied by the gas and reducing the volume of the gas.


#### Liquids and Gases have no fixed shape but Solids have a fixed shape

Liquids and Gases have no fixed shape because their particles are not held together in fixed positions. Therefore, the particles are free to move about (either by sliding over one another or at high speeds in random directions), and often take on the shape of the container it is in.


Meanwhile, since solid particles are held in fixed positions by strong forces of attraction, the particles are unable to move about, and so the shape of the solid is fixed.

### (b) Changes in State of matter and the Kinetic Particle Theory

Matter can undergo changes in state when heat is applied to or removed from it. The diagram below shows the possible changes in states. (Take note: only a few substances can undergo deposition and sublimation, e.g. lodine and Carbon Dioxide)




#### How temperature varies as a substance gains heat and undergoes melting and boiling



**Question:** What happens to the temperature of the substance as heat is applied and the substance melts/boils?

**Answer:** When matter undergoes a change in state, the temperature of the substance will remain constant. This is because *energy supplied is used to overcome the forces of interactions between particles* and bring the particles further apart instead of increasing the temperature of the substance.



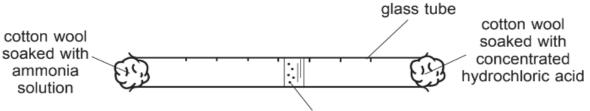
How temperature varies as a substance loses heat and undergoes condensation and freezing.

## (c) Diffusion

Definition:

Diffusion is the net movement of particles from a region of high concentration to a region of lower concentration along a concentration gradient

### (d) Conditions affecting the rate of diffusion:


### 1. Temperature

At higher temperatures, particles have more kinetic energy and hence move more vigorously/faster.

### 2. Particle mass

Particles with higher mass move more slowly than particles with lower mass.

**Question:** In the diagram below, a reaction occurs when ammonia gas (NH<sub>3</sub>) comes into contact with hydrochloric acid gas (HCl), and ammonium chloride would be formed. If both gases moved at the same speed, the ammonium chloride would be formed in the middle. Why then is the ammonium chloride formed closer to the HCl than NH<sub>3</sub>?



ammonium chloride

**Answer:** Ammonia gas travels a greater distance than the Hydrogen chloride because Ammonia gas diffuses at a higher rate than hydrogen chloride.(Relative Molecular Mass of ammonia = 17, Relative Molecular Mass of hydrogen chloride = 36.5). Therefore, ammonium chloride forms further away from ammonia solution and closer to the Hydrochloric Acid.

In Summary:

| Conditions                | Rate of diffusion | Reason                                                                                                                 |
|---------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------|
| Increase in Temperature   | Increase          | More kinetic energy of particles<br>allowing particles to move<br>faster                                               |
| Increase in Particle Mass | Decrease          | Particles with higher mass<br>require more kinetic energy to<br>move at the same speed as<br>particles with lower mass |

|                      |                 |                |                  |                      |                     |                  |                 | Gro             | Group            |                   |                |                   |                  |                  |                  |                  |               |
|----------------------|-----------------|----------------|------------------|----------------------|---------------------|------------------|-----------------|-----------------|------------------|-------------------|----------------|-------------------|------------------|------------------|------------------|------------------|---------------|
| _                    | =               |                |                  |                      |                     |                  |                 |                 |                  |                   |                | =                 | 2                | >                | 5                | II>              | 0             |
| 1                    |                 |                |                  |                      |                     |                  | -               |                 |                  |                   |                |                   |                  |                  |                  |                  | 2             |
|                      |                 |                |                  |                      |                     |                  | т               |                 |                  |                   |                |                   |                  |                  |                  |                  | He            |
|                      |                 |                |                  | Key                  |                     |                  | hydrogen<br>1   |                 |                  |                   |                |                   |                  |                  |                  |                  | helium<br>4   |
|                      | 4               | _              | proton           | (atomic) n           | umber               | -                |                 |                 |                  |                   |                | 2                 | 9                | 7                | 8                | 6                | 10            |
| :                    | Be              |                | ato              | atomic symbol        |                     |                  |                 |                 |                  |                   |                | 8                 | o                | z                | 0                | ш                | Ne            |
| ium                  | beryllium       |                |                  | name                 |                     |                  |                 |                 |                  |                   |                | boron             | carbon           | nitrogen         | oxygen           | fluorine         | neon          |
|                      | 6               |                | relativ          | relative atomic mass | mass                |                  |                 |                 |                  |                   |                | 11                | 12               | 14               | 16               | 19               | 20            |
|                      | 12              |                |                  |                      |                     |                  |                 |                 |                  |                   |                | 13                | 14               | 15               | 16               | 17               | 18            |
| Na                   | Mg              |                |                  |                      |                     |                  |                 |                 |                  |                   |                | ٩                 | Si               | ٩                | S                | C<br>C           | Ā             |
|                      | magnosium<br>24 |                |                  |                      |                     |                  |                 |                 |                  |                   |                | aluminium<br>27   | silicon<br>28    | phosphorus<br>31 | sulfur<br>32     | chlorine<br>35.5 | argon<br>40   |
| 6                    | 20              | 21             |                  | 23                   | _                   | 25               | 26              | 27              | 28               | 29                | 30             | 31                | 32               | 33               | 34               | 35               | 36            |
| ~                    | Sa              | Sc             | F                |                      |                     | ЧЧ               | Fe              | ပိ              | ī                | ŋ                 | Zn             | g                 | 99               | As               | Se               | Б                | 노             |
| potassium<br>39      | calcium<br>40   | scandium<br>45 | titanium<br>48   | vanadium<br>51       | chromium<br>52      | manganese<br>55  | iron<br>56      | cobalit<br>59   | nickel<br>59     | copper<br>64      | zinc<br>65     | gallium<br>70     | germanium<br>73  | arsenic<br>75    | selenium<br>79   | bromine<br>80    | krypton<br>84 |
| ~                    | 38              | 39             | 40               |                      | -                   | 43               | 44              | 45              | 46               | 47                | 48             | 49                | 50               | 51               | 52               | 53               | 54            |
| ą                    | Ś               | ≻              | Zr               |                      |                     | Lc               | Ru              | 뙨               | Pd               | Ag                | 8              | Ŀ                 | Sn               | Sb               | Te               | Г                | Xe            |
| alim<br>2            | strontium<br>88 | yttrium<br>89  | zirconium<br>91  |                      |                     | technetium<br>-  | 101             | nhodium<br>103  | palladium<br>106 | silver<br>108     | cadmium<br>112 | 115               | 119              | antimony<br>122  | tellurium<br>128 | 127              | xenon<br>131  |
| 5                    | 56              | 57 - 71        |                  |                      |                     | 75               | 76              | 11              | 78               | 79                | 80             | 81                | 82               | 83               | 84               | 85               | 86            |
| S                    | Ba              | lanthanoids    | _                |                      |                     | Re               | so              | Ŀ               | ħ                | Au                | БН             | 17                | 6                | ï                | Po               | At               | R             |
| caesium<br>133       | barium<br>137   |                | hafnium<br>178   |                      |                     | rhenium<br>186   | osmium<br>190   | iridium<br>192  | platinum<br>195  | gold<br>197       | 201            | thallium<br>204   | lead<br>207      | bismuth<br>209   | polonium         | astatine         | radon         |
| 87                   | 88              | 89 - 103       | 104              |                      | -                   | 107              | 108             | 109             | 110              | 111               | 112            |                   | 114              |                  | 116              |                  |               |
| francism<br>francism | Ra              | actinoids      | 1                |                      |                     | Bh               | Hs<br>haceium   | Mt              | De               | Rg                | Cn             |                   | F/<br>flerrovium |                  | Lv               |                  |               |
|                      |                 |                | _                |                      |                     | -                | I               | 1               | 1                | -                 | -              |                   | 1                |                  |                  |                  |               |
| 1                    |                 |                |                  |                      |                     |                  |                 |                 |                  |                   |                |                   |                  |                  |                  |                  |               |
| la                   | lanthanoids     |                | 57               | 58                   | 59                  | 60               | 61              | 62              | 63               | 64                | 65             | 99                |                  | 68               | 69               | 70               | 71            |
|                      |                 |                | La               | ő                    | ŗ                   | PZ               | Бт              | Sm              | Ŀ                | 99                | £              | ð                 |                  | ш                | ш                | ď                | 2             |
|                      |                 |                | lanthanum<br>139 | cerium<br>140        | praseodymium<br>141 | neodymium<br>144 | promethium<br>- | samarium<br>150 | europium<br>152  | gadolinium<br>157 | terbium<br>159 | dysprosium<br>163 | holmium<br>165   | erbium<br>167    | thulium<br>169   | ytterbium<br>173 | 175           |
|                      | actinoids       |                | 89               | 6                    | 91                  | 92               | 93              | 94              | 95               | 96                | 97             | 98                |                  | 100              | 101              | 102              | 103           |
|                      |                 |                | Ac               |                      | Ра                  | ∍                | d               | Ъ               | Am               | Ð                 | ¥              | ŭ                 |                  | Ē                | ΡW               | Ŷ                | 5             |
|                      |                 |                | actinium         |                      | protactinium        | uranium          | neptunium       | plutonium       | americium        | aurium            | berkelium      | californium       |                  | fermium          | mendelevium      | nobelium         | lawrenoium    |
|                      |                 | _              | '                | - 1                  | 107                 | ×20              | 1               | '               | '                | '                 |                | '                 | 1                |                  | 1                | '                | ı             |

6092 CHEMISTRY GCE ORDINARY LEVEL SYLLABUS

The Periodic Table of Elements

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.)