

Levelling Up Grades Through Skills

H2 Mathematics

Pure Mathematics

<u>Chapter 1:</u>	
Functions	

For more learning resources, do visit

t.me/levupeducation

© LevUp Education

Exam Requirements

- Be able to understand the concepts of function, domain and range.
- Calculate and find inverse functions and composite functions.
- Learn the conditions for the existence of inverse functions and composite functions.
- Apply Domain restriction to obtain an inverse function.
- Understand the relationship between a function and its inverse.

1. Relations and Functions

1.1 Relations

A relation from set A to set B is known as a _____ connecting elements in A (inputs) to elements in B (outputs). Set A is the _____ and set B is the _____ of the relation.

Domain represents the set of elements which are the _____. Range represents the set of elements which are the _____. Range is a _____ of the codomain.

1.2 Definition of Functions

Given a relation f: X —> Y, f is a function if each element in domain X maps to _____ element in the codomain Y.

The set X is the domain of f, denoted by D_f, and the set Y is the codomain of f.

If the element a ϵ X is mapped to the element b ϵ Y, then we write f(a)=b. Two functions are _____ if they have the ______.

1.3 Representation of a function

f : x | → x^2 + x, where x \in {1, 2, 3, 4} f(x) = x^2 + x, where x \in {1, 2, 3, 4}

Domain of f = Range of f =

1.4 Test if Relation exists as a Function

To test if a relation exists as a function graphically, a	line x = k, k \in D _f
drawn should cut graph f at only one point.	

1.5 Types of Functions

A function is ____ if f(x) = f(-x) for all values of x in its domain.

The graph of such a function is therefore _____ about the _____. The graph remains the same upon reflection in the y-axis.

A function is ____ if f(-x) = -f(x) for all values of x in its domain.

The graph of such a function is therefore _____ about the _____. The graph remains the same upon a 180° rotation about the origin.

A function f is _____ if no two elements in the given domain have the same output.

For $x_1, x_2 \in D_f$, if $x_1 \neq x_2$, then $f(x_1) \neq f(x_2)$ Equivalently, if $f(x_1) = f(x_2)$, then $x_1 = x_2$

Graphically, f is one-one if every horizontal line y = k, k \in R_f, cuts the graph of f at _____ point.

2. Inverse functions

2.1 Existence of an Inverse Function

Inverse function of f exists if f is _____.

2.2 Definition and Range of an Inverse Function

Let f be a one-one function. Then f has an inverse function f^{-1} defined by

Note that $f^{1}(x) \neq \frac{1}{f(x)}$

2.3 Solving for Rule of Inverse Functions

i) Let y = f(x)
ii) Make x the subject of the formula in terms of y so that x = g(y).
iii) From (i) and (ii), we have x = f⁻¹(y) = g(y)
Replacing y by x in f⁻¹ (y) = g(y), we obtain f⁻¹ (x) = g(x).

2.4 Graphical relationship between a Function and its Inverse

In general, if (a,b) is a point on the curve y=g(x), then (b,a) is on the curve $y = g^{-1}(x)$ since $g(a) = b \Leftrightarrow g^{-1}(b) = a$. Graphs of y = g(x) and $y = g^{-1}(x)$ are _____ of each other in the line y = x.

3. Composite Functions

3.1 Definition of Composite Functions

Let f and g be two functions, the composite function gf is defined by _____ for all x $\in \mathsf{D}_f$

fg ≠ gf

The composite function ff is written as f^2 f(f(x)) = ff(x) = f²(x)

3.2 Condition and Range of Composite Functions

Inverse trigonometry function	Notation	Equivalent form	Domain	Range of principal value
arcsin	y = sin ⁻¹ x	sin y =x	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
arccos	y = cos ⁻¹ x	cos y =x	$-1 \le x \le 1$	$0 \le y \le \pi$
arctan	y = tan ⁻¹ x	tan y =x	R	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Foundation Questions

Q1 Sketch the graphs of the following functions and state its range.

a) f : x $ \rightarrow x^2$ - 8x, x \in R, 1 \leq x \leq 10. Label the minimum point, intercept, f(1)	[3]
and f(10).	

b) g : x $ \rightarrow \ln(x) $, x $\in \mathbb{R}^+$	[2]
--	-----

c) h : x
$$| \rightarrow 1 + e^{x}$$
, x \in R, x < 2 [2]

-

Q2 A curve C has equation $y^2 = 2x$, $x \in R_0^+$. By considering the graph of C, [2] show that C does not represent a function.

Q3 Sketch the graphs of the following functions. Determine its range and whether they are one-one.

a)
$$f: x \mid \rightarrow sinx, x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 [3]
b) $g: x \mid \rightarrow 2e^{-x^2}, x \in \mathbb{R}$ [3]

Q4

a) Show that the inverse function of f, where f(x) = 2x - 4, $x \in R^+$, exists. Find [3] $f^{-1}(x)$ and state the domain.

b) Given that $g: x \to 1 + e^{-x}$, $x \in R$, define its inverse function in similar form [2] and state its range.

Q5 The function f is defined as $f(x) = \sqrt{x+1}$, $x \ge -1$. Show that the inverse [4] function of f exists. Sketch the graphs of y = f(x) and $y = f^{-1}(x)$ on the same diagram, showing clearly the graphical relationship between the graphs. Hence, find the exact value of x which satisfies the equation $f(x) = f^{-1}(x)$ and deduce the solution set to $f(x) \le f^{-1}(x)$.

Q6

- a) The functions f and g are defined by
 - f(x) = ln(x + 1), x > -1 g(x) = $\sqrt{2x + 3}$, x ≥ $-\frac{3}{2}$

Show that fg exists and define the function in a similar form. Show that gf does not exist

b) The function g is defined by $g(x) = \frac{4}{2-x}$, $x \in R$, $x \neq 0$, 2. Find an expression [4] for $g^2(x)$ and $g^3(x)$. Hence, determine the value of $g(\frac{1}{2})$ and $g^{100}(\frac{1}{2})$.

c) Let f and g be functions defined by $f(x) = e^{-x} + 1$, $x \in R^+$ and [3] $g(x) = \ln(x)$, 1 < x < 2. Determine whether the composite function fg exists. If it does, define the composite function in a similar form and find its range.

[4]