Levelling Up Grades Through Skills

H2 Mathematics

Pure Mathematics

Chapter 1:
 Functions

For more learning resources, do visit

t.me/levupeducation
© LevUp Education

Exam Requirements

- Be able to understand the concepts of function, domain and range.
- Calculate and find inverse functions and composite functions.
- Learn the conditions for the existence of inverse functions and composite functions.
- Apply Domain restriction to obtain an inverse function.
- Understand the relationship between a function and its inverse.

1. Relations and Functions

1.1 Relations

A relation from set A to set B is known as a \qquad connecting elements in A (inputs) to elements in B (outputs). Set A is the \qquad and set B is the \qquad of the relation.

Domain represents the set of elements which are the \qquad .
Range represents the set of elements which are the \qquad .
Range is a \qquad of the codomain.

1.2 Definition of Functions

Given a relation $f: X \rightarrow Y$, f is a function if each element in domain X maps to
\qquad element in the codomain Y.

The set X is the domain of f, denoted by D_{f}, and the set Y is the codomain of f.

If the element $a \in X$ is mapped to the element $b \in Y$, then we write $f(a)=b$.
Two functions are \qquad if they have the \qquad .

1.3 Representation of a function

$f: x \mid \rightarrow x^{2}+x$, where $x \in\{1,2,3,4\}$
$f(x)=x^{2}+x$, where $x \in\{1,2,3,4\}$

Domain of $f=$
Range of $f=$

1.4 Test if Relation exists as a Function

To test if a relation exists as a function graphically, a \qquad line $x=k, k \in D_{f}$ drawn should cut graph fat only one point.

1.5 Types of Functions

A function is ____ if $f(x)=f(-x)$ for all values of x in its domain.

The graph of such a function is therefore \qquad about the \qquad .
The graph remains the same upon reflection in the y-axis.

A function is ___ if $f(-x)=-f(x)$ for all values of x in its domain.
The graph of such a function is therefore \qquad about the \qquad _.

The graph remains the same upon a 180° rotation about the origin.

A function f is \qquad if no two elements in the given domain have the same output.

For $x_{1}, x_{2} \in D_{f}$, if $x_{1} \neq x_{2}$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right)$
Equivalently, if $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$

Graphically, f is one-one if every horizontal line $y=k, k \in R_{f}$, cuts the graph of f at
\qquad point.

2. Inverse functions

2.1 Existence of an Inverse Function

Inverse function of f exists if f is \qquad .

2.2 Definition and Range of an Inverse Function

Let f be a one-one function. Then f has an inverse function f^{-1} defined by

Note that $\mathrm{f}^{-1}(\mathrm{x}) \neq \frac{1}{f(x)}$

2.3 Solving for Rule of Inverse Functions

i) Let $y=f(x)$
ii) Make x the subject of the formula in terms of y so that $x=g(y)$.
iii) From (i) and (ii), we have $x=f^{-1}(y)=g(y)$

Replacing y by $x \operatorname{in~}^{-1}(y)=g(y)$, we obtain $f^{-1}(x)=g(x)$.

2.4 Graphical relationship between a Function and its Inverse

```
In general, if (a,b) is a point on the curve }\textrm{y}=\textrm{g}(\textrm{x})\mathrm{ , then (b,a) is on the curve
y= g
Graphs of }y=g(x)\mathrm{ and }y=\mp@subsup{g}{}{-1}(x)\mathrm{ are
```

\qquad

``` of each other in the line \(y=x\).
```


3. Composite Functions

3.1 Definition of Composite Functions

Let f and g be two functions, the composite function $g f$ is defined by
\qquad for all $x \in D_{f}$
$\mathrm{fg} \neq \mathrm{gf}$

The composite function ff is written as f^{2}
$f(f(x))=f f(x)=f^{2}(x)$
3.2 Condition and Range of Composite Functions

For any given functions f and g, the composite function gf exists if \qquad of $f \subseteq$ \qquad of g,
For the composite function gf, \qquad of $\mathrm{gf}=$ \qquad of f,
When the domain of $g=$ range of $f, D_{g}=R_{f}$ \qquad of gf = \qquad of g,

Inverse trigonometry function	Notation	Equivalent form	Domain	Range of principal value
\arcsin	$y=\sin ^{-1} x$	$\sin y=x$	$-1 \leq x \leq 1$	$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$
\arccos	$y=\cos ^{-1} x$	$\cos y=x$	$-1 \leq x \leq 1$	$0 \leq y \leq \pi$
\arctan	$y=\tan ^{-1} x$	$\tan y=x$	R	$-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$

Foundation Questions

Q1 Sketch the graphs of the following functions and state its range.
a) $f: x \mid \rightarrow x^{2}-8 x, x \in R, 1 \leq x \leq 10$. Label the minimum point, intercept, $f(1)$ and $f(10)$.
b) $g: x|\rightarrow| \ln (x) \mid, x \in R^{+}$
c) $h: x \mid \rightarrow 1+e^{x}, x \in R, x<2$
[2]
d) $k(x)=$
[2]

Q2 A curve C has equation $y^{2}=2 x, x \in R_{0}{ }^{+}$. By considering the graph of C, show that C does not represent a function.

Q3 Sketch the graphs of the following functions. Determine its range and whether they are one-one.
a) $f: x \mid \rightarrow \sin x, x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
[3]
b) $\mathrm{g}: \mathrm{x} \mid \rightarrow 2 \mathrm{e}^{-x^{2}}, \mathrm{x} \in \mathrm{R}$
[3]

Q4
a) Show that the inverse function of f, where $f(x)=2 x-4, x \in R^{+}$, exists. Find $f^{-1}(x)$ and state the domain.
b) Given that $g: x \mid \rightarrow 1+e^{-x}, x \in R$, define its inverse function in similar form [2] and state its range.

Q5 The function f is defined as $f(x)=\sqrt{x}+1, x \geq-1$. Show that the inverse
[4]
function of f exists. Sketch the graphs of $y=f(x)$ and $y=f^{-1}(x)$ on the same diagram, showing clearly the graphical relationship between the graphs. Hence, find the exact value of x which satisfies the equation $f(x)=f-1(x)$ and deduce the solution set to $f(x) \leq f^{-1}(x)$.
a) The functions f and g are defined by

$$
\begin{aligned}
& f(x)=\ln (x+1), x>-1 \\
& g(x)=\sqrt{2 x+3}, x \geq-\frac{3}{2}
\end{aligned}
$$

Show that fg exists and define the function in a similar form. Show that gf does not exist
b) The function g is defined by $\mathrm{g}(\mathrm{x})=\frac{4}{2-x}, \mathrm{x} \in \mathrm{R}, \mathrm{x} \neq 0,2$. Find an expression for $\mathrm{g}^{2}(x)$ and $\mathrm{g}^{3}(x)$. Hence, determine the value of $\mathrm{g}\left(\frac{1}{2}\right)$ and $\mathrm{g}^{100}\left(\frac{1}{2}\right)$.
c) Let f and g be functions defined by $f(x)=e^{-x}+1, x \in R^{+}$and $g(x)=\ln (x), 1<x<2$. Determine whether the composite function fg exists. If it does, define the composite function in a similar form and find its range.

